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Tunneling time in PT -symmetric systems
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In the present work, we propose a generalization of tunneling time in parity and time (PT )-symmetric
systems. The properties of tunneling time in PT -symmetric systems are studied with a simple contact interaction
periodic finite-size diatomic PT -symmetric model. The physical meaning of negative tunneling time in PT -
symmetric systems and its relation to spectral singularities is discussed.
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I. INTRODUCTION

In standard (Hermitian) quantum mechanics, the calcu-
lation of the time interval during which a particle interacts
with a barrier of arbitrary shape is not new and has attracted
a great deal of interest lately. A wide variety of theoreti-
cal and experimental work on this topic has been carried
out during the past two decades. This particular interest is
due to the introduction of non-Hermitian elements into the
Hamiltonian enabling the solution of specific problems in
which, for example, a complex index of refraction is used
(optics), or complex potentials are introduced far away from
the interaction region of the particles [1]. The tunneling time
problem was studied both theoretically and experimentally
(see, e.g., Refs. [2–4] and references therein), especially in
nanostructures or in mesoscopic systems smaller than 10 nm.
In these systems, the tunneling time will eventually play an
important role in determining transport properties, for ex-
ample in the frequency-dependent conductivity response of
mesoscopic conductors [5] and in the phenomenon of an
adiabatic charge transport [6,7]. Several authors have studied
the problem of tunneling time in passive scattering systems
using a number of completely different approaches, including
the oscillatory amplitude of the incident amplitude [8–11],
the time-modulated barrier [12], as well as the wave-packet
approach; see, e.g., Refs. [13–15]. In most approaches to
the tunneling time problem, more than one tunneling-time
component is involved, regardless of whether we deal with
the so-called Büttiker-Landauer approach[16], the Feynman
path-integral approach [17], or complex characteristic times
[18–20]. Furthermore, this does not seem to be a peculiarity
of quantum-mechanical waves, but rather a general result and
valid not only for electrons but also for any waves (sound and
electromagnetic) when their propagation through a medium
is described by a differential equation of second order. For
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electromagnetic waves, in Ref. [21] in the Faraday rotation
scheme, it was shown that the characteristic time associated
with the interaction of the classical electromagnetic wave with
a finite region is a complex quantity. As a consequence, the
emerging electromagnetic wave is elliptically polarized, and
the major axis of the ellipse is rotated relative to the original
direction of polarization. In addition, one of the components
of the complex time is closely related not only to the total den-
sity of states (DOS), but also to its decomposition into partial
DOS [4,16]. Furthermore, the two components are not entirely
independent quantities and are connected by Kramers-Kronig
relations [22]. In Ref. [23], the tunneling times associated with
frustrated total internal reflection of light were investigated
experimentally. It is shown that the two characteristic times
correspond, respectively, to the spatial and angular shifts of
the beam. Despite the progress that has been made towards
understanding the longstanding problem of tunneling time
in traditional quantum mechanics, as far as we know such
discussions are rather scarce in non-Hermitian systems (see,
e.g., Refs. [24–26]).

Without pretending to give an exhaustive overview of
the possible applications of non-Hermitian systems as an
ideal platform for exploring the functionality of new possible
devices, we briefly present some achievements in condensed-
matter physics [27], electronic circuits [28], coupled mechan-
ical oscillators [29–31], mesoscopic superconducting wires
[32], and photonic applications [33].

Most of the studies in non-Hermitian systems, both theo-
retical and experimental, have been carried out in parity and
time (PT )-symmetric systems, supporting the real spectrum
of eigenvalues. In such a system, a great deal of attention
was paid to the optical setups or theoretical models with the
gain (through optical or electrical pumping or nonlinear inter-
actions) and loss (due to absorption or radiation) where the
properties of the PT -symmetric system, including unidirec-
tional invisibility [34–36] and double refraction [37], can be
measured directly or calculated analytically. In Ref. [38] the
instabilities and the possibility of establishing localized com-
plex defect modes, with spectra lying within the allowed band,
have been investigated both theoretically and experimentally.
An interesting feature of resonance, as in discrete as well as
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scattering spectra in a PT -symmetric open quantum system,
was studied in Ref. [39] using the tight-binding model.

After this brief enumeration of the intriguing features of
PT -symmetric systems, the need for further research on
the problem of tunneling time in PT -symmetric systems
becomes apparent. Moreover, as shown in Ref. [40], the ab-
sorbing part of the Green’s function of non-Hermitian systems
is no longer related to the density of states, and it is gen-
erally a complex function. Only in special cases, such as
PT -symmetric systems, can the absorbing part of the Green’s
function remain real, although a positive-definite norm is not
guaranteed. The purpose of the present work goes in this
direction in the sense that the concept of generalized tunneling
time in PT -symmetric systems is proposed. The properties of
tunneling time in PT -symmetric systems are studied with a
simple contact interaction periodic finite-size diatomic PT -
symmetric model. We stress that unlike the positive-definite
tunneling time τ1 [see below, Eq. (1)] in real potential scat-
tering theory, the τ1 in PT -symmetric systems can be either
positively or negatively valued. The value of τ1 turning neg-
ative is closely related to the motion of pole singularities of
scattering amplitudes in a complex energy plane. The physical
interpretation of negative valued τ1 is also discussed.

The paper is organized as follows. The generalized tunnel-
ing time for PT -symmetric systems is introduced and defined
in Sec. II. A simple model and its analytic solutions are sum-
marized in Sec. III. The averaged tunneling time per unit cell
and its limit in an infinite periodic system are discussed in
Sec. IV. The impact of spectral singularities and numerics is
shown in Sec. V, followed by the discussion and a summary
in Sec. VI.

II. GENERALIZED TUNNELING TIME
IN PT -SYMMETRIC SYSTEMS

In the real potential scattering theory, the concept of tun-
neling or delay time for a particle tunneling through potential
barriers is conventionally defined through integrated density
of states, which is proportional to the imaginary part of the
full Green’s function of systems (see, e.g., Refs. [18–20]),

τ1(E ) = −Im

[∫ l

−l
dx〈x|Ĝ(E )|x〉

]
∝

∫ l

−l
dx|〈x|�E 〉|2, (1)

where l is the half-length of a potential barrier. The Ĝ(E ) =
1

E−Ĥ
is the Green’s function operator of the system. It is

related to the eigenstate of the system by the spectral repre-
sentational of the Green’s function,

Ĝ(E ) =
∑

i

∣∣�Ei

〉〈
�Ei

∣∣
E − Ei

, (2)

where eigenstate |�Ei〉 satisfies the Schrödinger equation,

Ĥ
∣∣�Ei

〉 = Ei

∣∣�Ei

〉
. (3)

In the case of complex potential scattering theory, now
one is facing the challenge of how the concept of tunnel-
ing time should be generalized and defined properly. One of
the key elements in developing the concept of tunneling or

delay time in a real potential scattering theory is counting
the probability that a particle spends inside of a barrier; see,
e.g., Refs. [41–43]. However, in complex potential scattering
theory, the norm of states is no longer conserved, so the
probability interpretation of the tunneling time becomes prob-
lematic. In addition, the spectral representation of the Green’s
function now depends on the eigenstates of both Ĥ and its
adjoint Ĥ†,

Ĝ(E ) =
∑

i

∣∣�Ei

〉〈
�̃Ei

∣∣
E − Ei

, (4)

where

Ĥ†
∣∣�̃Ei

〉 = Ei

∣∣�̃Ei

〉
. (5)

The biorthogonal and normalization relations can only be
established by eigenstates of dual systems together [24,44,45],∑

i

∣∣�Ei

〉〈
�̃Ei

∣∣ = I. (6)

Hence, the discontinuity of the Green’s function crossing the
branch cut in the complex E -plane is in general a complex
function, and it is no longer equivalent to the imaginary part
of the Green’s function; see Ref. [40]. Its relevance to the
conventional definition of the density of states is also lost,

DiscE 〈x|Ĝ(E )|x〉 ∝ 〈x|�E 〉〈�̃E |x〉 �= |〈x|�E 〉|2, (7)

where

DiscE Ĝ(E ) = Ĝ(E + i0) − Ĝ(E − i0)

2i
. (8)

Fortunately, in a PT -symmetric system, as shown in
Ref. [40], because of symmetry constraints, the discontinu-
ity of the Green’s function is still a real function, hence it
is identical to the imaginary part of the Green’s function,
DiscE Ĝ(E ) = ImĜ(E ). However, as a consequence of norm
violation with a complex potential, positivity of the imagi-
nary part of the Green’s function is not guaranteed. In this
work, the tunneling time through PT -symmetric barriers is
still defined by an integrated Green’s function, hence most of
the formalisms that are developed for real potential scattering
theory can still apply directly to a PT -symmetric system. The
imaginary part of the Green’s function is now referred to as
the generalized density of states of a PT -symmetric system.
Following the definition in Refs. [18–20], two components of
the traversal time τE are introduced by

τE = τ2(E ) + iτ1(E ) = −
∫ l

−l
dx〈x|Ĝ(E )|x〉, (9)

where τ1 and τ2 may be interpreted as two components of the
generalized concept of Büttiker-Landauer tunneling time that
are connected with the generalized density of states and the
Landauer resistance in a PT -symmetric system. The positiv-
ity and negativity of the generalized tunneling time τ1 simply
reflect the nature of potential barriers that either tend to keep
a particle in or force it out. The negative value portion of τ1 is
thus physically inaccessible and hence behaves similarly to a
forbidden gap in a periodic system.
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As shown in Refs. [19,20], the integrated Green’s function
is related to the transmission and reflection amplitudes by

−
∫ l

−l
dx〈x|Ĝ(E )|x〉

= d

dE
ln[t (k)eik2l ] + r (L)(k) + r (R)(k)

4E
eik2l , (10)

where t (k) and r (L/R)(k) are the transmission and left/right
reflection amplitudes, respectively, and k = √

2mE is the mo-
mentum of a particle. In practice, it is more convenient to
compute the tunneling time directly through the transmission
and reflection amplitudes.

III. A SIMPLE CONTACT INTERACTION
PT -SYMMETRIC IMPURITIES MODEL

In this section, a simple contact interaction PT -symmetric
model is adopted to investigate the properties of tunneling
time through layers of PT -symmetric barriers. Each single
cell of a barrier is composed of two complex components: one
absorbing component with loss, and another emissive compo-
nent with gain. Two components are placed symmetrically on
two sides of the cell along the center; the gain and loss in each
single cell are balanced. The potential barrier in a single cell
hence is PT -symmetric:

V (−x) = V ∗(x). (11)

The Hamiltonian of barriers is thus given by

Ĥ = − 1

2m

d2

dx2
+

N∑
n=−N

V (x − nL), (12)

where 2N + 1 is the total number of cells, and L represents
the length of a single cell. The total length of the barriers is
2l = (2N + 1)L. A simple diatomic PT -symmetric contact
interaction potential that represents two complex-conjugate
impurities is used:

V (x) = V δ(x − a) + V ∗δ(x + a), V = |V |eiθ . (13)

Two complex-conjugate impurities are placed on two sides of
a cell’s center with equal distance a. One is absorbing with
loss and another is emissive with an equal amount of gain.
The physical realization of such a PT -symmetric model may
be accomplished in a planar slab waveguide as discussed in
Ref. [46].

The simple contact interaction PT -symmetric impurities
model adopted in this work may be considered as a special
case of the periodic diatomic contact interaction model. It
turns out that the analytic form of the scattering solutions can
be found in a highly nontrivial way; see, e.g., the characteris-
tics determinant approach in Refs. [47–49]. In what follows,
we will simply summarize the results of scattering solutions.
A brief introduction about the general scattering theory, some
useful relations, and the characteristics determinant approach
are provided in Appendix A.

The transmission and left/right reflection amplitudes are
given by

t (k) = sec (Q(2N + 1)L)e−ik(2N+1)L

1 + i Im
[

e−ikL

t0(k)

] tan (Q(2N+1)L)
sin(QL)

,

r (L/R)(k)

t (k)
=

[
r (L/R)

0 (k)

t0(k)

]
sin (Q(2N + 1)L)

sin(QL)
, (14)

where t0(k) and r (L/R)
0 (k) are transmission and reflection am-

plitudes by a single cell (N = 0),

1

t0(k)
= 1 + 2

im|V |
k

cos θ + 2i

(
m|V |

k

)2

sin(k2a)eik2a,

r (L/R)
0 (k)

t0(k)
= −2

im|V |
k

[
cos(k2a ∓ θ ) + m|V |

k
sin(k2a)

]
.

(15)

Q plays the role of crystal momentum for a periodic lattice
and is related to k by

cos(QL) = Re

[
e−ikL

t0(k)

]
. (16)

It is quite remarkable to see that the transmission and re-
flection amplitudes for a periodic many-scatters system are
all related to single-cell scattering amplitudes in a very
compact fashion. If Q is treated as a free parameter that
represents the collective mode of the entire lattice of all
impurities, the short-range interaction dynamics that is de-
scribed by single-cell scattering amplitudes and long-range
physics of collective mode are totally factorized. The factor-
ization of short-range dynamics and long-range correlation
for an infinitely long periodic lattice or in a periodic finite
box has been a well-known fact in both condensed-matter
physics and nuclear/hadron physics. When the interaction
range is much smaller than the size of a cell or a trap,
the quantization conditions are given by a compact formula,
in which two components—(i) the short-range particles dy-
namics, and (ii) the long-range geometric effect due to the
periodic box or trap—are well separated. The compact form
is known as the Korringa-Kohn-Rostoker (KKR) method
[50,51] in condensed-matter physics, the Lüscher formula
[52] in LCQD, and the Busch-Englert-Rzażewski-Wilkens
(BERW) formula [53] in a harmonic-oscillator trap in the
nuclear physics community. Other related useful discussions
can be found in, e.g., Refs. [54–57]; see also the discussion in
Appendix B. The emergence of periodic dynamics in a finite-
size system may be best demonstrated by the characteristic
determinant approach that was developed in Refs. [47–49].
The characteristic determinant approach may be considered
as a ground-up approach. The key idea is to start from a single
cell and gradually build up to a many-cell system by adding
one cell at a time. Using the recursion relations satisfied by
the determinant of the D-matrix, D = 1 − Ĝ0V̂ , where Ĝ0 =

1
E−Ĥ0

is a free propagator of a particle, when the cells are
periodically arranged, the scattering dynamics for a many-cell
system is given by two factorized components: (i) the scatter-
ing amplitudes of a single cell that are the result of short-range
interaction; and (ii) the geometric factors that are associated

032210-3



GUO, GASPARIAN, JÓDAR, AND WISEHART PHYSICAL REVIEW A 107, 032210 (2023)

with the periodic structure of the entire system, which also
describe the collective modes of a finite-size crystal.

Finally, we note that the compact forms of the transmission
amplitude and crystal-momentum Q in Eqs. (14) and (16) in
terms of real and imaginary parts of e−ikL

t0(k) are only valid and
defined for the real k′s. For complex k, e.g., when looking for
the pole position in the complex-k plane, the correct values are
given by an analytic continuation of explicit expressions by
inserting the analytic form of t0(k) in Eq. (15) into Eqs. (14)
and (16), assuming k is real.

IV. AVERAGING TUNNELING TIME PER UNIT CELL
AT THE LARGE-N LIMIT

As N is increased, the band structure starts to appear,
and the tunneling time starts oscillating drastically due to
cos (Q(2N + 1)L) and sin (Q(2N + 1)L) factors. To evaluate
the asymptotic behavior of the tunneling time, it is more
convenient to define the tunneling time per unit cell,

τ̂ (k) = τE

(2N + 1)L
. (17)

For large N , the second term in Eq. (10) is suppressed and
the first term is a fast oscillating term. The result for an
infinite periodic system should be approached by adding a
small imaginary part to Q: Q → Q + iε, where ε � 1

(2N+1)L .
Hence the dominant term in t (k) is given by

sec (Q(2N + 1)L) ∝ eiQ(2N+1)L

and

τ̂ (k)
N→∞→ i

dQ

dE
. (18)

For the Q values defined on the real axis, this conclusion may
be justified by considering the averaged tunneling time per
unit cell,

〈̂τ (k)〉 = 1

2ε

∫ k+ε

k−ε

τ̂ (p)d p
N→∞→ i

dQ

dE
. (19)

Hence the fast oscillation is smoothed out. Although Eq. (19)
is not rigorously proved in this work, it can be checked
rather straightforwardly in numerics, and the rigorous math-
ematical proof may be accomplished by using a stationary
phase approximation. The physical meaning of the averaged
tunneling time per unit cell may be understood as follows:
due to limited resolution, the experimental device is usually
only able to measure the averaged result for fast oscillating
objects. Figures 1 and 2 show typical examples of plots of τ̂

for a small-sized system compared with i dQ
dE . As we can see

in Figs. 1 and 2, even for a small-sized system with only just
a few cells, the band structures of a totally periodic system
already start building up and becoming clearly visible. For
finite-size PT -symmetric barriers, τ̂1,2 oscillate around the
asymptotic result of 〈τ̂1,2〉 at the large-N limit (note that we
use dimensionless quantities in all figures).

The effect of exceptional points (EPs) that separate the bro-
ken and unbroken PT -symmetric phases in a totally periodic
infinite system [58–61] is also visible in a small-sized system;
see the dip near k ∼ 4.1 in Fig. 2(a). Near the exceptional
points, dQ

dE ∼ 0, 〈τ̂1,2〉 approach zero, and PT -symmetric

barriers become almost transparent. This phenomenon is
usually referred to as unidirectionally invisibility; see, e.g.,
Refs. [34,62]. The negative τ̂1 near the EP in Fig. 2(a) is
distinctive from the positive tunneling time in a real potential
scattering theory. In the PT -symmetric systems, τ̂1 may turn
negative due to the fact that the generalized density of states of
a PT -symmetric system is not positive-definite. The value of
τ1 turning negative has a strong association with the spectral
singularities of the PT -symmetric system. When the poles of
τE move across the real axis in the complex E -plane, they
yield drastic and even divergent enhancement near spectral
singularities. If the spectral singularities are located within
the band, the crossing of poles on the real axis may cause
the sign flip of τ1. Following the motion of a pole across the
real axis from an unphysical sheet into a physical sheet, the
peak of enhancement thus moves toward positive infinity that
is connected with negative infinity, and then the sign flips and
it continues moving away from negative infinity. A detailed
discussion about the effect of spectral singularities is given in
Sec. V.

We also remark that the sign of Q in Eq. (16) is not
well-defined and is physically ambiguous. The determination
of the sign of Q must be based on the sign of τ̂E . The am-
biguity of multivalued functions in physics is in fact quite
common. For example, the ambiguity of the nonanalyticity of
the scattering amplitude in some singularity-related cases has
been a well-known fact in the analytic S-matrix approach in
nuclear/particle physics; see, e.g., [63,64]. The nature of the
nonanalyticity is sometimes not fully determined, and some
extra constraint must be imposed on the theory to eliminate
the ambiguity, such as, e.g., using the perturbation-theory
iε-prescription as the reference. As in our case, the ambiguity
of the sign of Q is eliminated by using τ̂E as the reference.

V. SPECTRAL SINGULARITIES

With the analytic expressions of the transmission and re-
flection amplitudes given in Eqs. (14) and (16), it can be easily
checked that the traversal time τE for the PT -symmetric
model adopted in this work is a well-defined analytic func-
tion in the complex E -plane. Two types of singularities are
present: (i) a branch cut sitting along the positive real axis
in the complex E -plane that separate the physical sheet (the
first Riemann sheet) and the unphysical sheet (the second
Riemann sheet); (ii) poles of the transmission and reflection
amplitudes. These poles are called spectral singularities of
a non-Hermitian Hamiltonian when they appear on the real
axis [65–67], which yields divergences of the reflection and
transmission coefficients of the scattered states. The spectral
singularities are interpreted as resonance states with vanishing
spectral width in Ref. [65].

The motion of the poles in the complex E -plane has a
profound impact on the tunneling of the particle through the
PT -symmetric barriers. In what follows, we will first discuss
the distribution and the properties of pole singularities in
Sec. V A. How the value of τ1 is affected by the motion of the
poles is presented in Sec. V B. The impact of moving poles
on some other properties of the tunneling time is discussed in
Secs. V C and VI A.
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FIG. 1. (a) and (b) Comparison of k
m τ̂ with N = 3 (solid black) together with i k

m
dQ
dE (solid purple/light gray) vs k/m. More specifically, (a)

k
m τ̂1 (solid black) together with k

m
d Re[Q]

dE (solid purple/light gray); (b) k
m τ̂2 (solid black) together with k

m
d Im[Q]

dE (solid purple/light gray); (c) the
corresponding band-structure plot in unbroken PT -symmetric phase. The parameters are taken as θ = 0.1π , |V | = 3, mL = 1, and ma = 0.2,
where |V | is dimensionless.

A. Distribution and motion of poles in a complex plane

The locations of these poles are model-parameter-
dependent, and they can be found by solving 1/t (k) = 0.
Based on Eq. (14), there are two types of solutions:

(i) Type I singularities are given by solutions of 1
t0(k) = 0.

Hence cos(QL) = 0 and 1
t (k) = 0 are both automatically satis-

fied, and

Q = π

L

(
n + 1

2

)
, n ∈ Z. (20)

The type I singularities originate from a single cell (N = 0),
and then they are carried on and shared by the entire many-
cell system. The type I solutions hence are independent of the
number of cells and the size of the system.

(ii) Type II singularities are system-size-dependent and
given by two conditions,

cos (Q(2N + 1)L) = 0, Im

[
e−ikL

t0(k)

]
= 0. (21)

Using Eqs. (15) and (16), two conditions can be rearranged in
the form

(x(k), y(k)) =
(

cos

(
π

(
n + 1

2

)
2N + 1

)
, cos θ

)
, (22)

where

x(k) = 1 − 2
[m|V |

k sin(k2a)
]2

cos(kL)
,

y(k) = 1 − 2
[m|V |

k sin(k2a)
]2

2 m|V |
k cot(kL)

− 1

2

m|V |
k

sin(k4a). (23)

The 2N + 1 independent integer n′s are labeled as

n = 0, 1, . . . , 2N,

so Q = π (n+ 1
2 )

(2N+1)L sits in the first Brillouin zone. In fact, type
I singularity solutions on real axis coincide with solutions
of Eq. (22) with n = N , hence Q = π

2L and cos(QL) = 0 as
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FIG. 2. (a) and (b) Comparison of k
m τ̂ with N = 3 (solid black) together with i k

m
dQ
dE (solid purple/light gray) vs k/m. More specifically,

(a) k
m τ̂1 (solid black) together with k

m
d Re[Q]

dE (solid purple/light gray); (b) k
m τ̂2 (solid black) together with k

m
d Im[Q]

dE (solid purple/light gray);
(c) the corresponding band-structure plot in the broken PT -symmetric phase. The parameters are taken as θ = 0.2π , |V | = 3, mL = 1, and
ma = 0.2, where |V | is dimensionless.

well for type II solutions with n = N . However, types I and
II solutions of n = N diverge in a complex plane; see, e.g.,
Fig. 4.

The solutions of spectral singularities (poles on real axis)
can be visualized graphically by plotting parametric curves
using both sides of Eq. (22) as (x, y) coordinates for a fixed
|V |. The intersections of curves indicate the location of spec-
tral singularities; see, e.g., Fig. 3. The distribution of spectral
singularity solutions is split up, and poles are clustered into
bands with gaps in between (see Fig. 3), where the lowest two
bands, k/m ∈ [2.7, 4.52] and k/m ∈ [5.24, 6.69], are marked
as shadowed areas with red and blue (different gray-scale
colors), respectively. As N is increased, the number of so-
lutions in each band grows linearly. The motion of poles in
the complex k-plane is illustrated in Fig. 4. For θ ∼ 0, all the
poles are located in the unphysical sheet (the second Riemann
sheet). As θ is increased, some poles start moving across the
real axis into the physical sheet (the first Riemann sheet). The
critical value of θc for spectral singularities is individually

dependent; see, e.g., Fig. 4. The density of solutions over a
small θ interval is controlled by the inverse slope of dashed
red (dashed gray) and solid blue (solid gray) curves in Fig. 3;
the flatter the curves are, the more spectral singularities are
going to cross the real axis over a small range of θ increment.

In addition, it is also easy to show, using Eq. (22), that for
large |V | the poles are located around the zeros of sin(2ka). At
the limiting case |V | → ∞, poles start approaching k = πn

2a .
The physical meaning of such coincidences can be understood
by relating them to the formation of resonant states in a single
cell, where the distance between two δ potentials 2a now plays
a dominant role, rather than the length of the cell L. As a
consequence, the electron spends most of its time moving
back and forth before leaving the cell. With decreasing |V |, the
poles start moving toward large k, and the number of poles at
the low-energy region decrease and approach zero. Note that
in the limit kL � 1 and in the first-order Taylor expansion, the
positions of the poles do not depend on k, and the following
approximate expression m|Vcr| ≈ 1

2a sin π
4

2n+1
2N+1 can be used to
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FIG. 3. Spectral singularities condition plot: the parametric plots
of the dashed red (dashed gray) and solid blue (solid gray) curves
are generated with (x, y) coordinates given by the left-hand side of
Eq. (22) as a function of k. The dashed black vertical line is generated

with coordinates of (cos(
π (n+ 1

2 )
2N+1 ), cos θ ) with N = 1, n = 0, 1, 2,

and θ ∈ [0, π ]. The arrows indicate increasing θ and decreasing k
directions. The value of (k, θ ) of spectral singularities for fixed |V | is
given by intersection of the dashed black vertical line and the dashed
red (dashed gray) and solid blue (solid gray) curves, and marked as
purple dots (gray dots). The θ values of spectral singularities are
indicated by θ ′

cs. The shadowed bands represent allowed bands of
solutions as N → ∞. The dimensionless parameters are taken as
|V | = 3, mL = 1, ma = 0.2, and N = 1.

calculate the critical value |Vcr| for given parameters: N , n,
and a.

B. Negative τ1 and its relation to moving poles

In the real potential scattering, τ1 always remains positive
because of the positivity of the density of states of the systems.
However, in PT -symmetric systems, τ1 is now related to the
generalized density of states, which could be either positive
or negative and so is τ1. For θ ∼ 0, PT -symmetric systems
behave just like normal real potential systems, and τ1 remains
positive. As θ is increased, the value of τ1 may turn negative
at certain energy ranges. τ1 turning negative is closely related
to the motion of poles across the real axis moving from an
unphysical sheet (the second Riemann sheet) into a physical
sheet (the first Riemann sheet).

For a single cell (N = 0), no band structure can be ob-
served yet. The situation is relatively simple. Every time the
pole crosses the real axis and moves into the physical sheet,
the value of τ1 turns negative near the crossing points. An
example is illustrated in Fig. 5. For a single cell, only a
single spectral singularity can be found near k/m = 4.22 at
θc = 0.474π ; see Fig. 4. As we can see in Figs. 5(a)–5(c), for
θ < θc = 0.474π , the pole is still located in the unphysical
sheet, and τ ′

1s values (solid black) are positive. As θ ap-

FIG. 4. The motion of poles in the complex k/m-plane as a
function of increasing θ for the solutions in the red band in Fig. 3:
k/m ∈ [2.7, 4.54], (N, n) = (0, 0) (dashed black) and (N = 1, n =
0, 1, 2) (solid red/solid gray). The arrows indicate increasing θ direc-
tions. The θ values of spectral singularities are indicated by θ ′

cs. The
dimensionless parameters are taken as |V | = 3, mL = 1, ma = 0.2,
and N = 0, 1.

proaches θc = 0.474π , the pole on the unphysical sheet moves
towards the real axis, and the peak of enhancement in τ1 that
is generated by the pole moves up to positive infinity. The
spectral singularity at θ = θc is a critical point where the peak
of positive infinity meets negative infinity. As θ is increased
and passes over θc [see Figs. 5(d)–5(f)], the pole now already
moves across the real axis into the physical sheet, and the
peak in τ1 moves across the boundary between positive and
negative infinity and turns negative. As θ is continuously
increased, the pole moves away from the real axis on the phys-
ical sheet, which ultimately yields a negative bump near the
pole location in τ1. The steepness of the bump is determined
by how close the pole is to the real axis. This can be easily
demonstrated with the motion of a single pole. Near the pole,
the transmission amplitude is approximated by

t (k) ∝ 1

k − kpole
= k − kre − iε

(k − kre)2 + ε2
, (24)

where kpole = kre + iε, with kre and ε being the real and imag-
inary parts of the pole position. The location of the pole in
a physical sheet or an unphysical sheet is determined by the
sign of ε: an unphysical sheet if ε < 0 and a physical sheet if
ε > 0. The τ1 near the pole is thus dominated by

τ1 ∼ m

k

ε

(k − kre)2 + ε2
, (25)

hence as the pole moves across the real axis into the physical
sheet, ε changes its sign.
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FIG. 5. Plot of k
m τ̂1 with N = 0 (solid black), N = 1 (dashed red/dashed gray), together with k

m
d Re[Q]

dE (solid purple/light gray) vs k/m for
various θ values: (a) θ = 0.2π ; (b) θ = 0.25π ; (c) θ = 0.44π ; (d) θ = 0.49π ; (e) θ = 0.57π ; (f) θ = 0.65π . Some of the pole positions near
the real axis are listed and marked in red (gray) (N = 1) and black (N = 0). The dimensionless parameters are taken as |V | = 3, mL = 1, and
ma = 0.2.

In the case of N = 1, the size of the system is still small,
but the band structure already starts appearing. Three spectral
singularity solutions can be found within the first cluster of
solutions in k/m ∈ [2.7, 4.52]; see Figs. 3 and 4. The locations

are k/m = (4.52, 4.22, 2.84) at θc = (0.21π, 0.47π, 0.59π ),
respectively. When the first pole crosses the real axis at
(k/m, θc) = (4.52, 0.21π ) and moves into a physical sheet,
it generates a negative bump in τ1; see Fig. 5(b). As θ is
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continuously increased near θc = 0.47π , the second pole is
getting close to the real axis at k/m = 4.22 and starts compet-
ing with the nearby first pole in the physical sheet. It becomes
dominant near θc = 0.47π , and it turns τ1 back into positive;
see Fig. 5(c). After the second pole crosses the real axis, it flips
τ1 again and generates a negative bump at k/m ∼ 4.14; see
Fig. 5(d). Just as θ is continuously increased up to θc = 0.59π ,
the last pole moves in and becomes the dominant effect in
turning τ1 when it crosses the real axis near k/m ∼ 2.7; see
Figs. 5(e) and 5(f).

For a large-N system, the situation is even more interesting.
The band structure and EPs start getting involved, competing
with poles and playing a role in turning τ1. The spectral
singularities are clustered into bands; the first band appears in
k/m ∈ [2.7, 4.52] at corresponding θ ∈ [0.59π, 0.21π ]. For
θ ∈ [0.21π, 0.5π ], spectral singularities and poles are clus-
tered in k/m ∈ [4, 4.5], which happens near the edge of two
merging bands (EPs). The effect of poles located near the edge
of two merging bands is hence highly suppressed by EPs, and
the τ1 remain positive. For θ ∈ [0.5π, 0.59π ], the cluster of
spectral singularities and poles now moves up to the lower
edge of the band k/m ∼ 2.8, and they become the dominant
force in determining the fate of τ1. When they move across
the real axis, the τ1 in the lower band below EP is turned
completely; see the purple (light gray) curves in Figs. 5(e)
and 5(f).

Now the physical interpretation of the negative value of
τ1 as repelling time that is physically inaccessible can be
understood in terms of the motion of poles. As we can see
in Fig. 5, the turning to negative of τ1 is closely related to
the motion of the pole crossing the real axis. As the pole
crosses the real axis from the unphysical sheet into the phys-
ical sheet, the value of τ1 experiences the transition process
from a positive value to positive infinity that is connected
with negative infinity, and ultimately to a negative value. τ1

diverges at spectral singularity and generates an infinite sharp
barrier for the particle to pass through. As the pole moves into
the physical sheet, the barrier is broadened and turned into a
negative value band that repels particles. The behavior of τ2 is
plotted in Fig. 6.

C. Dispersion integral relation of τE

In addition to turning the value of τ1, the motion of pole
singularities also has a big impact on the dispersion integral
relation of τE . For the small θ ∼ 0, all the spectral singulari-
ties are located in the unphysical sheet or equivalently in the
lower half complex k-plane with Im[k] < 0. Hence, except
for the branch cut, no other singularities can be found in
the physical sheet, and the τE must satisfy Cauchy’s integral
theorem (also referred to as the dispersion integral relation in
nuclear/particle physics),

τE = 1

π

∫ ∞

0
dω

Discωτω

ω − E
, (26)

where for the PT -symmetric system the discontinuity of τE

crossing the branch cut is

DiscEτE = Im[τE ] = τ1(E )

for real values of E . Specifically for the model used in this
work, asymptotically τ1(E ) → 0 as either E → 0 or E → ∞,
hence Cauchy’s integral on the right-hand side of Eq. (26) is
well-behaved and converging. No subtractions or extra con-
stant terms are needed.

As θ is continuously increased, poles of transmission and
reflection amplitudes start moving around in a complex plane.
Some move across the branch cut on the real axis and start to
interfere with a Cauchy integration contour; see, e.g., Fig. 4.
When poles from the unphysical sheet move across the branch
cut into the physical sheet, the contour of the Cauchy integral
is dragged to follow the motion of the poles and move together
with them. The residue contribution of the poles in the physi-
cal sheet thus must be picked up due to the deformation of the
contour of the Cauchy integral, hence Eq. (26) is modified to

τE =
∑

i

[
2i Respole-i

E − Epole-i
− 2i Res∗

pole-i

E − E∗
pole-i

]
+ 1

π

∫ ∞

0
dω

Discωτω

ω − E
,

(27)

where Epole-i stands for the position of the ith pole. The residue
of the ith pole of the DiscEτE function, Respole-i, is given by

Respole-i = (E − Epole-i )DiscEτE |E→Epole-i . (28)

For complex E , the DiscEτE function must be generalized to

DiscEτE = τE − τE∗

2i
. (29)

The poles of transmission and reflection amplitudes in PT -
symmetric systems always show up in complex-conjugate
pairs. In terms of momenta, the conjugate pair, Epole-i and
E∗

pole-i, is associated with kpole-i and −k∗
pole-i, respectively. The

pair of conjugate pole terms together guarantees that all the
pole terms in Eq. (27) are always real for E on the real axis.
Equation (27) can be checked numerically rather straightfor-
wardly for a small-N system; see, e.g., Fig. 7. As N grows, the
number of poles soon becomes too large to manage.

VI. DISCUSSION AND SUMMARY

A. Large-N limit in the presence of spectral singularities?

The averaging tunneling time in Eq. (18) works well and
is mathematically well-defined in bands where spectral singu-
larities are absent on a real axis, and the poles are all either
in a physical sheet or they have already crossed the real axis
into an unphysical sheet. However, in the bands where the
divergent singularities show up on the real axis and the band
is still in the middle of a transition between the all positive
and the all negative band of τ1 (see, e.g., Fig. 8), Eq. (18)
breaks down, and the large-N limit becomes ambiguous and
problematic. Now we are facing the following question: is
there a physically meaningful large-N limit in the region
where divergent singularities show up? Should we even bother
to ask such a question? Or perhaps is the size-dependent fast
oscillating and divergent behavior in the τ1 region the nature
of PT -symmetric systems? If such a limit indeed exists,
should the size-dependent type II spectral singularities be all
smoothed and washed out? Is a large-size periodic system
supposed to be free of type II spectral singularities? We still
do not have a clear answer to these questions.
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FIG. 6. Plot of k
m τ̂2 with N = 0 (solid black), N = 1 (dashed red/dashed gray), together with k

m
d Im[Q]

dE (solid purple/light gray) vs k/m, for
various θ values: (a) θ = 0.2π ; (b) θ = 0.25π ; (c) θ = 0.44π ; (d) θ = 0.49π ; (e) θ = 0.57π ; (f) θ = 0.65π . Some of the pole positions near
the real axis are listed and marked in red (gray) (N = 1) and black (N = 0). The dimensionless parameters are taken as |V | = 3, mL = 1, and
ma = 0.2.

One very interesting observation is that as N → ∞, solu-
tions of poles are pushed either towards or far away from the
real axis. This can be understood because the pole position
depends on factors such as eiQ(2N+1)L and eik(2N+1)L, hence as

N → ∞, two factors either grow fast or decay exponentially
for Q and k in a complex plane. The divergence of spec-
tral singularities may be removed by computing the value of
τ̂ (k ± iε) away from singularities where ε is much larger than
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FIG. 7. The plot of the real and imaginary parts of τE by the
dispersion integral relation in Eq. (27) (solid black) together with τE

(dashed red/gray) for N = 0 (the curves overlap). Only one pole is
present at k/m = 3.885 + 0.442i. τE is computed and shown off the
real E axis only for the purpose of fast convergence of the Cauchy
integral. The parameters are taken as θ = 0.55π , |V | = 3, mL = 1,
and ma = 0.2, where |V | is dimensionless.

the imaginary part of the pole solutions. However, similar to
the ambiguity in the sign of Q, for the band that is still in the
middle of the transition, some parts of it have already turned
negative but other parts remain positive, and now we are fac-
ing the ambiguity of shifting k above or below singularities.
In addition, one may also wonder how energy can be accessed
in a complex plane. The idea proposed by Lloyd in Ref. [68]
may shed some light on this question: the averaged Green’s
function of a disordered system with Cauchy-type uncorre-
lated disorder is equal to the Green’s function of an ordered
system with the energy argument shifted into a complex plane.

B. Summary

In summary, the concept of tunneling time is generalized
and applied to PT -symmetric systems. The distinctive fea-
tures and properties of the tunneling time in PT -symmetric
systems are studied and discussed by using a simple exactly
solvable diatomic PT -symmetric impurities model. Unlike
the positive-definite τ1 in real potential scattering theory, the
τ1 in PT -symmetric systems can be either positively or neg-
atively valued. The value of τ1 turning negative is closely
related to the motion of pole singularities of scattering am-
plitudes in a complex k-plane. When the poles are all located
in an unphysical sheet (the second Riemann sheet), τ1 re-
mains positive. As poles moves close to and ultimately cross
the real axis into a physical sheet (the first Riemann sheet),
the poles generate an enhancement in τ1 near the location
of the poles. The peak of enhancement moves into positive
infinity and then back in from negative infinity with the sign
flipped. For large-sized systems, the situation is even more
intriguing. The band structure of the system is clearly visible
for even small-sized systems. The number of poles grows
drastically with size, and the distribution of poles splits into
bands. When the poles show up inside an allowed band of
a system and all move across the real axis, they tend to flip

the sign of the entire band. In some bands where two bands
start merging together at an exceptional point (EP), the EPs
tend to force τ1 to approach zero and start to compete with the
poles, so PT -symmetric systems become almost transparent
near the EPs. The fate of τ1 near EPs is now the result of two
competing forces: the poles and the EPs.

The negative value of τ1 is a distinctive feature of PT -
symmetric systems as a consequence of norm violation, hence
it may be used to quantify and calibrate the degree of norm
violation in PT -symmetric systems even with balanced gain
and loss. In addition, the negative value portion of τ1 is
physically inaccessible and behaves just like a forbidden gap
in conventional periodic real potential systems. Therefore,
by manipulating balanced gain and loss in a PT -symmetric
system, we may be able to manufacture a new type of
band-structure electronic or optical devices even for a small
finite-size nonperiodic system.

The impact of spectral singularities on the dispersion in-
tegral relation of τE and the large-N limit is also discussed.
As poles move across the real axis into a physical sheet, the
contour of the Cauchy integral must be deformed and follow
the motion of the poles, hence the residue terms must be
picked up in a dispersion integral relation of τE . In the band of
absent spectral singularities, the large-N limit is well defined
and can be achieved by either averaging the fast oscillating
behavior of τE or using iε-prescription by shifting k off the
real axis into a complex plane. However, in the bands that are
plagued by divergent spectral singularities, defining a large-N
limit becomes problematic. The question of how to define a
physically meaningful large-N limit in the presence of spectral
singularities is still open.
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APPENDIX A: PARTICLE SCATTERING BY AN ARRAY
OF PERIODIC PT -SYMMETRIC CELLS

Considering the scattering of a spinless particle of mass m
by assembly of periodic PT -symmetric cells, the dynamics is
described by the one-dimensional Schrödinger equation along
the incident direction x,[

− 1

2m

d2

dx2
+

N∑
n=−N

V (x − nL)

]
�E (x) = E�E (x), (A1)

where V (x) stands for the potential in a unit cell. 2N + 1
cells are placed symmetrically on both sides of the origin.
The length of scattering barriers is thus (2N + 1)L, where L
denotes the length of a single cell. Inside of each single cell,
we adopt a simple PT -symmetric impurities model with a
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FIG. 8. Plot of k
m τ̂1 with N = 5 and |V | = 10 (solid black) together with k

m
d Re[Q]

dE (solid purple/light gray) for various θ values: (a) θ =
0.18π ; (b) θ = 0.27π ; (c) θ = 0.32π . The rest of the parameters are taken as mL = 1 and ma = 0.2.

potential,

V (x) = V δ(x − a) + V ∗δ(x + a), V = |V |eiθ . (A2)

Two contact interactions with complex strength that are con-
jugate to each other are placed on two sides of the cell’s center
at an equal distance a, thus the potential satisfies the PT
symmetry relation,

V (−x) = V ∗(x). (A3)

For scattering solutions, it is more convenient to consider
the Lippmann-Schwinger (LS) equation,

�E (x) = �
(0)
E (x) +

N∑
n=−N

∫ ∞

−∞
dx′G0(x − x′; E )

× V (x′ − nL)�E (x′), (A4)

where

�
(0)
E (x) = Aeikx + Be−ikx (A5)

represents the incident waves with linear superposition of both
left- and right-propagating plane waves, and

k =
√

2m(E + i0)

stands for the linear momentum of an incident particle. The
Green’s function of a free particle, G0(x; E ), is given by

G0(x; E ) =
∫ ∞

−∞

d p

2π

eipx

E − p2

2m

= − im

k
eik|x|. (A6)

With the contact interaction potential given in Eq. (A2), the
scattering dynamics is thus totally determined by discrete LS
equations on scattering sites,

N∑
n′=−N

[D(k)]n,n′

[
�E (n′L + a)

�E (n′L − a)

]
=

[
�

(0)
E (nL + a)

�
(0)
E (nL − a)

]
, (A7)

where

[D(k)]n,n′ =
[
δn,n′ + imV

k eik|n−n′ |L imV ∗
k eik|nL−n′L+2a|

imV
k eik|nL−n′L−2a| δn,n′ + imV ∗

k eik|n−n′ |L

]
.

(A8)
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The on-energy-shell scattering amplitudes can be easily pulled
out by considering the asymptotic form of the wave function,

�E (x)
|x|>NL= �

(0)
E (x) + i fE (p)eik|x|, p = x

|x|k, (A9)

where

fE (p) = −
N∑

n=−N

e−ipnL

[
mV

k
e−ipa�E (nL + a)

+ mV ∗

k
eipa�E (nL − a)

]
. (A10)

Using Eq. (A7), the formal solution of the scattering am-
plitude with a general incident wave, Aeikx + Be−ikx , is thus
given by

fE (p) = −
N∑

n,n′=−N

e−ipnL

[
mV

k
e−ipa mV ∗

k
eipa

]
[D−1(k)]n,n′

×
[
�

(0)
E (n′L + a)

�
(0)
E (n′L − a)

]
. (A11)

The S-matrix in a left/right-propagating wave basis—(R)
A = 1 and B = 0; (L) A = 0 and B = 1—is defined by

S(E ) =
[

t (k) r (L)(k)

r (R)(k) t (k)

]
, (A12)

where t (k) and r (L/R)(k) are transmission and left/right re-
flection amplitudes, and they are related to the left/right basis
scattering amplitudes by

t (k) = 1 + i f (R)
E (k) = 1 + i f (L)

E (−k),

r (R)(k) = i f (R)
E (−k), r (L)(k) = i f (L)

E (k). (A13)

Transmission and reflection amplitudes can be parametrized
by three real functions: one inelasticity η(k) ∈ [1,∞] and two
phase shifts δ±(k) (see Ref. [40]),

t = η cos(δ+ − δ−)ei(δ++δ− ),

r (R/L) = i[η sin(δ+ − δ−) ±
√

η2 − 1]ei(δ++δ− ). (A14)

The inelasticity and phase shifts are linked to scattering am-
plitudes directly by the relations (see Ref. [40]),

η(k)e2iδ±(k) − 1

2i

= [ f (R)(k) ± f (L)(k)] ± [ f (R)(−k) ± f (L)(−k)]

4
. (A15)

For a PT -symmetric system, using relations given in
Eq. (A14), one can easily verify that

1

2i
ln det [S(E )] = δ+(k) + δ−(k) = Im[ln t (k)]. (A16)

In addition, another very useful relation between transmis-
sion amplitude and the D(k) = 1 − G0(k)V matrix defined in
Eq. (A8) is given by

t (k) = 1

det [D(k)]
. (A17)

This relation can be proven by using the properties of the
S-matrix. The S-matrix operator is related to the D-matrix
operator by [see Eqs. (12), (24), and (27) in Ref. [40]]

Ŝ(E ) = D̂(−k)

D̂(k)
, ±k =

√
2m(E ± i0), (A18)

where D̂(±k) are defined below and above branch cut singu-
larity of the analytic D̂-matrix operator, respectively, and the
branch cut is sitting on the real energy axis. Hence we obtain

1

2i
ln det [S(E )] = −Im[ln det[D(k)]] = Im[ln t (k)]. (A19)

Both t (k) and det[D(k)] are analytic functions defined in the
entire complex E -plane. The real parts of the two functions are
related to the imaginary parts by the Cauchy integral, which
ultimately yields the relation (A17).

1. Analytic scattering solutions by the LS equation approach

For the simple contact interaction PT -symmetric model, it
turns out that the scattering solutions can be obtained analyti-
cally. The discrete LS equations in Eq. (A7) can be solved by
assuming[

�E (nL + a)

�E (nL − a)

]
=

[
C D

E F

][
cos(QnL)

i sin(QnL)

]
. (A20)

That is, the wave functions at the scattering sites are deter-
mined completely by collective modes of the entire lattice
of impurities, and hence they are described by plane waves
with a wave vector Q. All the coefficients (C, D, E , F ) and
the wave vector Q can be determined by plugging Eq. (A20)
into Eq. (A7). Using the identities

N∑
n′=−N

eik|nL−n′L+d| cos(Qn′L)

= i
sin(k|d| − kL) − sin(k|d|) cos(QL)

cos(kL) − cos(QL)
cos(QnL)

+ i
sin(kd ) sin(QL)

cos(kL) − cos(QL)
sin(QnL)

− C(k) cos(knL + kd ) (A21)

and
N∑

n′=−N

eik|nL−n′L+d| sin(Qn′L)

= i
sin(k|d| − kL) − sin(k|d|) cos(QL)

cos(kL) − cos(QL)
sin(QnL)

− i
sin(kd ) sin(QL)

cos(kL) − cos(QL)
cos(QnL)

+ iS(k) sin(knL + kd ), (A22)

where d = ±2a, and

C(k) = [cos (Q(N + 1)L) − cos(QNL)eikL]eikNL

cos(kL) − cos(QL)
,

S(k) = [sin (Q(N + 1)L) − sin(QNL)eikL]eikNL

cos(kL) − cos(QL)
, (A23)
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comparing both sides of Eq. (A7), all the coefficients of
the independent plane waves, ( cos(QnL), sin(QnL)) and
( cos(knL), sin(knL)), must all vanish. Hence, we find

Q = 1

L
arccos

[
cos(kL) + m|V |

k
2 cos θ sin(kL)

+ 2

(
m|V |

k

)2

sin(k2a) sin(kL − k2a)

]
. (A24)

The relation given in Eq. (A24) is in fact the exact
energy-momentum dispersion relation when N → ∞ and the

PT -symmetric system or a diatomic crystal system becomes
totally periodic; see, e.g., Refs. [48,69]. The wave vector Q
hence plays the role of crystal momentum, where a crystal is
formed by all the impurities placed at the interaction sites. We
also remark that even though for a finite system the wave func-
tion at interaction sites is indeed periodic and simply given by
Bloch waves, �E (nL ± a) ∝ e±iQnL , the entire wave function
is not periodic and does not satisfy the Bloch theorem.

The coefficients C and D are given by the solutions of the
coupled algebra equations,

cos(ka)C(k)

[(
1 + mV ∗

k
α

)
C + mV ∗

k
βD

]
+ sin(ka)S(k)

[(
1 − mV ∗

k
α

)
D − mV ∗

k
βC

]
= −A + B

imV
k

,

sin(ka)C(k)

[(
1 − mV ∗

k
α

)
C − mV ∗

k
βD

]
+ cos(ka)S(k)

[(
1 + mV ∗

k
α

)
D + mV ∗

k
βC

]
= −A − B

mV
k

, (A25)

where

α = sin(k2a − kL) − sin(k2a) cos(QL)

cos(kL) − cos(QL) + mV ∗
k sin(kL)

, β = i sin(k2a) sin(QL)

cos(kL) − cos(QL) + mV ∗
k sin(kL)

. (A26)

The coefficients E and F are related to C and D by

E = mV

k
(αC + βD), F = mV

k
(βC + αD). (A27)

Using Eqs. (A20) and (A10), the analytic expression of the scattering amplitude is given by

fE (p) = −mV

k

[
mV ∗

k
eipa[α�c(p) + β�s(p)] + e−ipa�c(p)

]
C − mV

k

[
mV ∗

k
eipa[β�c(p) + α�s(p)] + e−ipa�s(p)

]
D, (A28)

where

�c(p) =
N∑

n=−N

e−ipnL cos(QnL) = cos (k(N + 1)L) cos(QNL) − cos(kNL) cos (Q(N + 1)L)
cos(pL) − cos QL

,

�s(p) =
N∑

n=−N

e−ipnLi sin(QnL) = sin (k(N + 1)L) sin(QNL) − sin(kNL) sin (Q(N + 1)L)
cos(pL) − cos QL

. (A29)

After some lengthy and highly nontrivial calculation, compact forms of the transmission and reflection amplitudes can be found,[
t (k)eik(2N+1)L

]−1 = det[D(k)]e−ik(2N+1)L

= cos (Q(2N + 1)L) − i sin(kL)
sin (Q(2N + 1)L)

sin(QL)
+ 2

im|V |
k

cos θ cos(kL)
sin (Q(2N + 1)L)

sin(QL)

+ 2i

(
m|V |

k

)2

sin(k2a) cos(kL − k2a)
sin (Q(2N + 1)L)

sin(QL)
, (A30)

and

r (R/L)(k) = −
im|V |

k

det[D(k)]

sin (Q(2N + 1)L)
sin(QL)

2

[
cos(k2a ± θ ) + m|V |

k
sin(k2a)

]
. (A31)

2. Characteristic determinant approach

The analytic solutions can also be obtained elegantly by the characteristic determinant approach that was developed in
Refs. [47–49]. The key idea is to take advantage of recursion relations that the determinant of the D-matrix in Eq. (A8) must
satisfy. Starting with a single impurity, by adding one impurity at a time and using recursion relations, the expression of the
determinant of the D-matrix of a finite-size multiple cells system can be obtained.
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The general idea of the characteristic determinant approach
can be summarized as follows: consider a simple impurities
model with a potential of

V (x) =
M∑

n=1

Vnδ(x − xn), xn−1 < xn, (A32)

where Vn is the strength of contact interaction, xn denotes the
position of the nth impurity, and M is the total numbers of
scatters. The matrix elements of the D-matrix, D̂ = 1 − G0V̂ ,
for this simple contact interaction model are thus given by

[D(k)]n,n′ = δn,n′ + imVn

k
eik|xn−xn′ |. (A33)

Let us introduce a short-hand notation

D(M ) = det [D(k)]M×M

to denote the determinant of the D-matrix for a system with
M cells. The determinant of the D-matrix for systems with M,
M − 1, and M − 2 cells, respectively, is thus related by the
recursion relation

D(M ) = A(M )D(M−1) − B(M )D(M−2), (A34)

where

B(M ) = VM

VM−1
eik2(xM−xM−1 ),

A(M ) = 1 + B(M ) + iVM

k
(1 − eik2(xM−xM−1 ) ). (A35)

The initial conditions for the recurrence relations are

D(−1) = 1, D(0) = 1, A(1) = 1 + imV1

k
= D(1). (A36)

The transmission amplitude for an M-cells system is thus
simply given by t (k) = 1/D(M )(k). Once the transmission
amplitude is given for the contact interactions model, the re-
flection amplitudes may be worked out simply by a matching
boundary condition at the site of each scatter. The reflection
and transmission amplitudes are thus related by[

1
r (R)(k)

]
= M(M )(k)

[
t (k)

0

]
,[

0
t (k)

]
= M(M )(k)

[
r (L)(k)

1

]
, (A37)

where the transfer matrix for an M-cells system is given by

M(M )(k) =
M∏

n=1

[
1 + imVn

k
imVn

k e−2ikxn

− imVn
k e2ikxn 1 − imVn

k

]
(A38)

and

det[M(M )(k)] = 1. (A39)

The transfer matrix can be parametrized in terms of transmis-
sion and reflection amplitudes by

M(M )(k) =
⎡⎣ 1

t (k) − r(L) (k)
t (k)

r(R) (k)
t (k) t (k) − r(L) (k)r(R) (k)

t (k)

⎤⎦. (A40)

The left-propagating reflection amplitude, r (L)(k), can be ob-
tained by taking advantage of the transfer-matrix relation

M(M )(k) = M(M−1)(k)

[
1 + imVM

k
imVM

k e−2ikxM

− imVM
k e2ikxM 1 − imVM

k

]
,

(A41)

which describes an M-cells system composed of (M − 1)
cells counting from left to right plus an Mth cell sitting
on the right edge of the system. Using Eq. (A40) for both
M-cells and (M − 1)-cells systems, the left-propagating re-
flection amplitude, r (L)(k), for an M-cells system is related to
the determinant of the D-matrix by

r (L)(k) =
⎡⎣1 − D(M−1) (k)

D(M ) (k)
imVM

k

− 1

⎤⎦e−2ikxM . (A42)

The right-propagating reflection amplitude r (R)(k) can be ob-
tained using the same procedure by reversing the direction
of operation and counting from right to left. For the PT -
symmetric system, left/right reflection amplitudes are related
by the symmetry relation (see Ref. [40])

r (L)(−k) = r (R)∗(k). (A43)

With some lengthy calculation, for the diatomic periodic
PT -symmetric model, we find again

t (k) = 1

det[D(k)]
= sec (Q(2N + 1)L)e−ik(2N+1)L

1 + iIm
[

e−ikL

t0(k)

] tan (Q(2N+1)L)
sin(QL)

,

r (L/R)(k)

t (k)
=

[
r (L/R)

0 (k)

t0(k)

]
sin (Q(2N + 1)L)

sin(QL)
, (A44)

where Q is defined in Eq. (A24). The transmission and
reflection amplitudes by a single cell, t0(k) and r (L/R)

0 (k),
respectively, are given by

1

t0(k)
= 1 + 2

im|V |
k

cos θ + 2i

(
m|V |

k

)2

sin(k2a)eik2a,

r (L/R)
0 (k)

t0(k)
= −2

im|V |
k

[
cos(k2a ∓ θ ) + m|V |

k
sin(k2a)

]
.

(A45)

The result for a general diatomic model can be found, e.g., in
Refs. [48,49].

APPENDIX B: PERIODIC PT -SYMMETRIC SYSTEMS

Let us also consider a periodic system[
− 1

2m

d2

dx2
+ VL(x)

]
�

(Q,L)
E (x) = E�

(Q,L)
E (x), (B1)

where

VL(x) =
∞∑

n=−∞
V (x + nL)
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is a periodic potential: VL(x + nL) = VL(x). The wave func-
tion satisfies the periodic boundary condition

�
(Q,L)
E (x + nL) = eiQnL�

(Q,L)
E (x), (B2)

where a superscript Q is added to label the Q-dependence of
the periodic boundary condition. The stationary solutions can
be found by a homogeneous LS equation for a single cell (see
Refs. [70–74]),

�
(Q,L)
E (x) =

∫ L
2

− L
2

dx′G(Q,L)
0 (x − x′; E )VL(x′)� (Q,L)

E (x′),

(B3)
where the periodic Green’s function of a free particle,
G(Q,L)

0 (x; E ), is defined by

G(Q,L)
0 (x; E ) =

∞∑
n=−∞

G0(x + nL; E )e−iQnL

= 1

L

∑
p= 2πn

L +Q,n∈Z

eipx

E − p2

2m

= − im

k

[
eik|x| + cos(kx − QL) − cos(kx)eikL

cos(kL) − cos(QL)

]
.

(B4)

With the contact interactions potential in Eq. (A2), the quan-
tization condition for eigensolutions is given by

det

[
1 − V G(Q,L)

0 (0; E ) −V ∗G(Q,L)
0 (2a; E )

−V G(Q,L)
0 (−2a; E ) 1 − V ∗G(Q,L)

0 (0; E )

]
= 0. (B5)

Hence we again get the well-known energy-momentum dis-
persion relation for a periodic system (see, e.g., Refs. [48,69]),

cos(QL) = cos(kL) + m|V |
k

2 cos θ sin(kL)

+ 2

(
m|V |

k

)2

sin(k2a) sin(kL − k2a). (B6)

For a periodic PT -symmetric system, a generalized den-
sity of states for a single cell may be defined by

n(Q,L)
E (x) = − 1

π
Im[〈x|Ĝ(Q,L)(E )|x〉]. (B7)

The spectral representation of the full Green’s function oper-
ator is given by (see, e.g., Appendix C in Ref. [40])

Ĝ(Q,L)(E ) =
∑

i

∣∣� (Q,L)
Ei

〉〈
�̃

(Q,L)
Ei

∣∣
E − Ei

, (B8)

where Ei = Ei(Q) is the ith band eigenvalue as a function of
the crystal momentum Q, and the sum is over all the allowed
bands. |�̃ (Q,L)

E 〉 represents the eigenstate of adjoint Hamilto-
nian Ĥ†,

Ĥ†
∣∣�̃ (Q,L)

E

〉 = E
∣∣�̃ (Q,L)

E

〉
. (B9)

The wave functions, |� (Q,L)
E 〉 and |�̃ (Q,L)

E 〉, together are
biorthogonal and can be normalized in a unit cell,∫ L

2

− L
2

dx
[〈

x
∣∣� (Q,L)

Ei

〉〈
�̃

(Q,L)
Ei

∣∣x〉] = 1. (B10)

Hence the integrated generalized density of states for a peri-
odic system is now given by∫

BZ
dQ

∫ L
2

− L
2

dxn(Q,L)
E (x) =

∑
i

∫
BZ

dQδ(E − Ei ) = dQ

dE
,

(B11)

where integration of the crystal momentum is confined within
the first Brillouin zone. We remark that the above relation is
only defined in allowed bands; the density of states should be
defined as zero in the gaps.
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